<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.4 Views in queries</td>
<td>135</td>
</tr>
<tr>
<td>4.5 Access control</td>
<td>136</td>
</tr>
<tr>
<td>4.5.1 Resources and privileges</td>
<td>136</td>
</tr>
<tr>
<td>4.5.2 Commands for granting and revoking privileges</td>
<td>137</td>
</tr>
<tr>
<td>4.6 Use of SQL in programming languages</td>
<td>138</td>
</tr>
<tr>
<td>4.6.1 Integration problems</td>
<td>139</td>
</tr>
<tr>
<td>4.6.2 Cursors</td>
<td>140</td>
</tr>
<tr>
<td>4.6.3 Dynamic SQL</td>
<td>142</td>
</tr>
<tr>
<td>4.6.4 Procedures</td>
<td>145</td>
</tr>
<tr>
<td>4.7 Summarizing examples</td>
<td>147</td>
</tr>
<tr>
<td>4.8 Bibliography</td>
<td>150</td>
</tr>
<tr>
<td>4.9 Exercises</td>
<td>150</td>
</tr>
<tr>
<td>Part II. Database design</td>
<td>155</td>
</tr>
<tr>
<td>5 Design techniques and models</td>
<td>157</td>
</tr>
<tr>
<td>5.1 The database design process</td>
<td>158</td>
</tr>
<tr>
<td>5.1.1 The life cycle of information systems</td>
<td>158</td>
</tr>
<tr>
<td>5.1.2 Methodologies for database design</td>
<td>160</td>
</tr>
<tr>
<td>5.2 The Entity-Relationship model</td>
<td>163</td>
</tr>
<tr>
<td>5.2.1 The basic constructs of the model</td>
<td>165</td>
</tr>
<tr>
<td>5.2.2 Other constructs of the model</td>
<td>170</td>
</tr>
<tr>
<td>5.2.3 Final overview of the E-R model</td>
<td>177</td>
</tr>
<tr>
<td>5.3 Documentation of E-R schemas</td>
<td>179</td>
</tr>
<tr>
<td>5.3.1 Business rules</td>
<td>180</td>
</tr>
<tr>
<td>5.3.2 Documentation techniques</td>
<td>182</td>
</tr>
<tr>
<td>5.4 Bibliography</td>
<td>183</td>
</tr>
<tr>
<td>5.5 Exercises</td>
<td>184</td>
</tr>
<tr>
<td>6 Conceptual design</td>
<td>189</td>
</tr>
<tr>
<td>6.1 Requirements collection and analysis</td>
<td>189</td>
</tr>
<tr>
<td>6.2 General criteria for data representation</td>
<td>194</td>
</tr>
<tr>
<td>6.3 Design strategies</td>
<td>196</td>
</tr>
<tr>
<td>6.3.1 Top-down strategy</td>
<td>196</td>
</tr>
<tr>
<td>6.3.2 Bottom-up strategy</td>
<td>198</td>
</tr>
<tr>
<td>6.3.3 Inside-out strategy</td>
<td>201</td>
</tr>
<tr>
<td>6.3.4 Mixed strategy</td>
<td>202</td>
</tr>
<tr>
<td>6.4 Quality of a conceptual schema</td>
<td>203</td>
</tr>
<tr>
<td>6.5 A comprehensive method for conceptual design</td>
<td>204</td>
</tr>
<tr>
<td>6.6 An example of conceptual design</td>
<td>205</td>
</tr>
<tr>
<td>6.7 CASE tools for database design</td>
<td>209</td>
</tr>
<tr>
<td>6.8 Bibliography</td>
<td>211</td>
</tr>
<tr>
<td>6.9 Exercises</td>
<td>211</td>
</tr>
<tr>
<td>7 Logical design</td>
<td>217</td>
</tr>
<tr>
<td>7.1 Performance analysis on E-R schemas</td>
<td>218</td>
</tr>
</tbody>
</table>
7.2 Restructuring of E-R schemas
 7.2.1 Analysis of redundancies
 7.2.2 Removing generalizations
 7.2.3 Partitioning and merging of entities and relationships
 7.2.4 Selection of primary identifiers
7.3 Translation into the relational model
 7.3.1 Entities and many-to-many relationships
 7.3.2 One-to-many relationships
 7.3.3 Entities with external identifiers
 7.3.4 One-to-one relationships
 7.3.5 Translation of a complex schema
 7.3.6 Summary tables
 7.3.7 Documentation of logical schemas
7.4 An example of logical design
 7.4.1 Restructuring phase
 7.4.2 Translation into the relational model
7.5 Logical design using CASE tools
7.6 Bibliography
7.7 Exercises
8 Normalization
 8.1 Redundancies and anomalies
 8.2 Functional dependencies
 8.3 Boyce–Codd normal form
 8.3.1 Definition of Boyce–Codd normal form
 8.3.2 Decomposition into Boyce–Codd normal form
 8.4 Decomposition properties
 8.4.1 Lossless decomposition
 8.4.2 Preservation of dependencies
 8.4.3 Qualities of decompositions
 8.5 Third normal form
 8.5.1 Definition of third normal form
 8.5.2 Decomposition into third normal form
 8.5.3 Other normalization techniques
 8.6 Database design and normalization
 8.6.1 Verification of normalization on entities
 8.6.2 Verification of normalization on relationships
 8.6.3 Further decomposition of relationships
 8.6.4 Further restructurings of conceptual schemas
 8.7 Bibliography
 8.8 Exercises

Part III. Database technology
9 Technology of a database server
 9.1 Definition of transactions
9.1.1 ACID properties of transactions 285
9.1.2 Transactions and system modules 287
9.2 Concurrency control 287
 9.2.1 Architecture of concurrency control 287
 9.2.2 Anomalies of concurrent transactions 288
 9.2.3 Concurrency control theory 290
 9.2.4 Lock management 301
 9.2.5 Deadlock management 305
9.3 Buffer management 307
 9.3.1 Architecture of the buffer manager 307
 9.3.2 Primitives for buffer management 308
 9.3.3 Buffer management policies 310
 9.3.4 Relationship between buffer manager and file system 310
9.4 Reliability control system 311
 9.4.1 Architecture of the reliability control system 312
 9.4.2 Log organization 313
 9.4.3 Transaction management 315
 9.4.4 Failure management 317
9.5 Physical access structures 320
 9.5.1 Architecture of the access manager 321
 9.5.2 Organization of tuples within pages 321
 9.5.3 Sequential structures 323
 9.5.4 Hash-based structures 325
 9.5.5 Tree structures 327
9.6 Query optimization 332
 9.6.1 Relation profiles 333
 9.6.2 Internal representation of queries 336
 9.6.3 Cost-based optimization 339
9.7 Physical database design 341
 9.7.1 Definition of indexes in SQL 343
9.8 Bibliography 343
9.9 Exercises 344
10 Distributed architectures 349
 10.1 Client-server architecture 351
 10.2 Distributed databases 353
 10.2.1 Applications of distributed databases 354
 10.2.2 Local independence and co-operation 355
 10.2.3 Data fragmentation and allocation 356
 10.2.4 Transparency levels 358
 10.2.5 Classification of transactions 360
 10.3 Technology of distributed databases 361
 10.3.1 Distributed query optimization 362
 10.3.2 Concurrency control 363
 10.3.3 Failures in distributed systems 368
10.4 Two-phase commit protocol
 10.4.1 New log records 369
 10.4.2 Basic protocol 370
 10.4.3 Recovery protocols 372
 10.4.4 Protocol optimization 374
 10.4.5 Other commit protocols 375
10.5 Interoperability
 10.5.1 Open Database Connectivity (ODBC) 377
 10.5.2 X-OPEN Distributed Transaction Processing (DTP) 378
10.6 Co-operation among pre-existing systems 381
10.7 Parallelism
 10.7.1 Inter-query and intra-query parallelism 384
 10.7.2 Parallelism and data fragmentation 385
 10.7.3 Speed-up and scale-up 386
 10.7.4 Transaction benchmarks 387
10.8 Replicated databases 388
 10.8.1 New functions of replication managers 390
10.9 Bibliography 391
10.10 Exercises 391

Part IV. Database evolution 395
11 Object databases 397
11.1 Object-Oriented databases (OODBMSs)
 11.1.1 Types 398
 11.1.2 Classes 399
 11.1.3 Methods 402
 11.1.4 Generalization hierarchies 404
 11.1.5 Persistence 408
 11.1.6 Redefinition of methods 411
 11.1.7 Refinement of properties and methods 414
 11.1.8 The object-oriented database manifesto 416
11.2 The ODMG standard for object-oriented databases 417
 11.2.1 Object Definition Language: ODL 417
 11.2.2 Object Query Language: OQL 419
11.3 Object-Relational databases (ORDBMSs)
 11.3.1 SQL-3 data model 423
 11.3.2 SQL-3 query language 427
 11.3.3 The third generation database manifesto 428
11.4 Multimedia databases 429
 11.4.1 Types of multimedia data 429
 11.4.2 Queries on multimedia data 430
 11.4.3 Document search 431
 11.4.4 Representation of spatial data 432
11.5 Technological extensions for object-oriented databases 434
14 Databases and the World Wide Web 489

14.1 The Internet and the World Wide Web 490
- 14.1.1 The Internet 490
- 14.1.2 The World Wide Web 491
- 14.1.3 HTML 492
- 14.1.4 HTTP 494
- 14.1.5 Gateways 494

14.2 Information systems on the Web 495
- 14.2.1 Publication and consultation on the Web 496
- 14.2.2 Transactions on the Web 496
- 14.2.3 Electronic commerce and other new applications 497

14.3 Design of data-intensive Web sites 498
- 14.3.1 A logical model for data-intensive hypertexts 499
- 14.3.2 Levels of representation in Web hypertexts 502
- 14.3.3 Design principles for a data-intensive Web site 505

14.4 Techniques and tools for database access through the Web 508
- 14.4.1 Database access through CGI programs 508
- 14.4.2 Development tools 510
- 14.4.3 Shortcomings of the CGI protocol 511
- 14.4.4 Simulating long connections for transactions 511
- 14.4.5 Server-based alternatives to the CGI approach 512
- 14.4.6 Client-based alternatives to the CGI approach 514

14.5 Bibliography 516

14.6 Exercises 517

Part V. Appendices & Bibliography 519

Appendix A Microsoft Access 521

A.1 System characteristics 522

A.2 Definition of tables 523
- A.2.1 Specification of join paths 528
- A.2.2 Populating the table 529

A.3 Query definition 530
- A.3.1 Query By Example 530
- A.3.2 The SQL interpreter 536

A.4 Forms and reports 538

A.5 The definition of macros 539

Appendix B DB2 Universal Database 543

B.1 DB2 overview 544
- B.1.1 Versions of the system 544
- B.1.2 Instances and schemas of DB2 545
- B.1.3 Interaction with DB2 545

B.2 Database management with DB2 546
- B.2.1 Interactive tools 546
- B.2.2 Application programs 551
B.3 Advanced features of DB2 554
 B.3.1 Extension of SQL for queries 554
 B.3.2 Object-oriented features of DB2 558

Appendix C Oracle PL/SQL 565
 C.1 Tools architecture of Oracle 565
 C.2 Base domains 567
 C.3 The object-relational extension of Oracle 569
 C.4 PL/SQL language 572
 C.4.1 Execution of PL/SQL in a client-server environment 573
 C.4.2 Declarations of variables and cursors 574
 C.4.3 Control structures 576
 C.4.4 Management of exceptions 578
 C.4.5 Procedures 580
 C.4.6 Packages 585

Bibliography 587

Index 593